
1 SELECTING AND PROCESSING INDEX TERMS

Most web search engines today index every single word on a page
because they have abundant storage and processing power. At the
same, they can cater for the most unexpected queries (e.g., searching
for exact phrases that contain stopwords). However, in general, it
is not advisable to index every word but only those that have the
highest values. How are values defined?

1 Selecting and Processing Index Terms

1.1 Stopword Removal and Stemming

To facilitate search, words are extracted from documents to create an index. In
traditional IR systems, words typically go through the stopword removal and
stemming processes before they are are inserted into the index.

1.1.1 Stopword removing

Stopword removal removes words that are considered non-content bearing. Since
it is not easy to decide which words are non-content bearing, we have to resort
to heuristic methods. For example, any combination of the following heuristics
can be used to decide if a word is a stopword or not:

• Every word that has less than 2 characters

• Articles and prepositions

• Most frequent n terms in the collection.

Stopword removal has a significant impact on index size since a stopword
typically has a very high number of occurrences in the collection. Thus, re-
moving them from the index means the elimination of long postings lists from
the index. If done right, stopword removal has little impact on precision and
recall. Suppose if we do not index articles and prepositions, then the query
“The President of United States” also matches “a president in United States”,
which is not perfect but acceptable for most users. Stopword

removal
enhances
efficiency but
does not hurt
effectiveness.

Since stopword removal enhances retrieval efficiency without hurting effec-
tiveness, most early-generation web search engines implemented it until Alta
Vista pioneered truly full-index indexing by including all words in its index. A
well-known used example often quoted to support the need of indexing every
word is the famous quote “To be or Not to Be”, which consists of stopwords
only, and as such would not be indexed and hence not searchable after stopword
removal.

This famous example aside, there are subject domains where the simple rules
stated above fail. For example, in a chemistry collection, words like “I” and “He”
are symbols of chemical elements (respectively, for “Iodine” and “Helium”). In
fact, all of the common chemical symbols consist of one or two letters. Removing
them from the index would be a disaster.

1 c©Suntek Computer Systems

1.1 Stopword Removal and Stemming1 SELECTING AND PROCESSING INDEX TERMS

Most, if not all, web search engines nowadays do not perform stopword
removal during indexing, because the contents on the web are very diversified
and the specific needs of users vary widely. Instead, they typically remove
stopwords from a query when the query contains enough non-stopwords. For
example, “of” in the query “Department of Computer Science” will be removed
but the single-word query “of” or the famous quote “to be or not to be” will be
accepted and processed as is.

Google, as of early 2008, removes stopwords and informs the users of the
removal by displaying a message at the top of the result window. If the user
wants to retain the stopword, he/she can enclosed the stopword with double
quotes. However, as of end of 2008, Google appears to search all stopwords.

1.1.2 Stemming

Stemming converts various spellings and grammatical forms of the same word
into their root, or stem. For example, “recognize” and “recognise” are, respec-
tively, American and British spellings of the same word, and “computes”, “com-
puter”, “computing”, and “computation”, etc., are various grammatical forms
of the word “compute”. In most cases, various spellings of the same word, be
it cultural or grammatical variations, should be considered the same in search.
That is, “recognize” should match “recognise”, and “compute” should match
“computes”.

As in stopword removal, stemming reduces the size of the index, although
this is not the main reason for using stemming. Stemming significantly improves
recall and is considered a standard requirement (unlike stopword removal) in
most search engine applications. Imagine how bad it is if a search on “computer”
would not match “computers”, or a search on “compute” would not match
“computation”.

As is the case with stopword removal, most web search engines do not use
stemming, because the increase of recall is not a major issue for web search
engines since even if the search engine gives you only pages that contain the
word “computer”, but not “computers”, when you search for “computer”, your
are going to get more than enough results. Then, why take the risk of making
mistake in stemming, that is, mapping words with different meanings into the
same stem, causing incorrect results to be returned?

1.1.3 Consistency between searching and indexing

Typically, the same stopword removal and stemming methods have to be applied
to both the search side and the index side. Figures 1(a) and 1(b) show whether
consistent application of stopword removal or stemming is or not in different
scenarios.

As can be seen from Fig. 1(a), once stopword removal is applied to the
documents, query processing must apply it as well. Since if not, the stopwords
that were not removed from the query will result in no matches because they
cannot be found in the index. On the other hand, if all words are retained in

2 c©Suntek Computer Systems

1.1 Stopword Removal and Stemming1 SELECTING AND PROCESSING INDEX TERMS

Stopword Removed
from Queries?

Yes No
Stopword Removed Yes

√ ×
from Documents? No

√ √

(a)

Stemming on
Queries Applied?

Yes No
Stemming on Yes

√ ×
Documents Applied? No × √

(b)

Figure 1: Consistency requirements for (a) stopword removal, and (b) stemming.

the index, the query processor can retain or remove stopwords from the queries
without causing any problem. See the examples in Sec 1.1.1.

Stemming is more restricted, since it actually changes the spelling of a word.
When stemming is applied to the documents, it must be applied to the queries as
well. As with stopword removal, it is also advisable not to perform stemming on
the document words (if computational cost is not a concern) so that the query
processor does not have to be forced to stem the queries. Instead, a query term
can be expanded into its spelling variations (e.g., by looking up a dictionary). For
example, the word “computer” can be expanded into “computer OR computers
OR ...” so that the search engine will return all documents matching any of
the variations. Again, this gives the query processor the flexibility to search a
word’s spelling variations or not. For example, it is not necessary to expand the
query terms, if it is estimated that the query has enough high quality results,
or when the expansion of a query term does not make sense considering the
context of the whole query (e.g., returning results on “computers science” given
the query “computer science” may not make sense).

In conclusion, once you have committed to performing stopword removal
or stemming on documents, you must do the same on the queries. If a word
was treated as a stopword and not indexed but later on found to be a useful
word to include in the index, the whole set of documents have to be re-indexed.
Likewise, if a word is found to be stemmed incorrectly, the whole index has to
be rebuilt to fix the problem. This advocates the indexing of every word in
a document and without stemming to avoid the need for re-indexing should a
mistake or a change of application needs is found later.

3 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

1.2 Stemming Methods

Stemming can be done by table lookup. That is, a table mapping every word
into its spelling variations is maintained. Obviously, this method is simple but
the maintenance of the table is expensive. In the rest of this subsection, we will
study the two classes of algorithmic methods:

• Linguistic methods which define linguistic rules to transform a word into
its stem. The Porter’s algorithm is a well-known implementation based
on linguistic method.

• Statistical methods that are based on corpus analysis. The successor vari-
ety method will be described.

1.2.1 Linguistic methods

Linguistic methods exploit knowledge about the language of the documents to
define linguistic rules to transform a word into its stem. In English, perhaps
in other western languages as well, spelling variations of the same word usually
share the same prefix1 but vary only in the suffixes. Therefore, we can identify
the common suffixes and transform them properly so that they can be put back
to the prefix to form a good stem. Of course, it is also possible to identify
linguistic prefixes and remove them, e.g., “indefinite” can be transformed to
“definite” by prefix removal. This leads to the term affix removal algorithms

referring to methods that identify and transform both the prefix and suffix of
a word to obtain the stem of the word. Since prefix transformation is rare in
English, most of the examples given below apply to suffixes.

Linguistic transformation rules can be context free or context sensitive. A
context-free rule has the form X −→ Y , which means that when a suffix matches
X, it will be replaced with Y . A context-sensitive rule has the form (A)X −→ Y ,
which will be applied only if the suffix of a word matches X and the prefix
satisfies the context specified by (A) (see Sec. 1.2.1 for examples of contexts).

Porter’s Algorithm

It is clear that to obtain good stemming results, the rules must be carefully
specified. The Porter’s algorithm is a well-known linguistic stemming method.
The rules are compact, leading to high efficiency, and yet the quality of the
stemmed results is comparable to algorithms that are much more complex.

The Porter’s algorithm identifies 60 common suffixes and groups them into
five steps. In each step, a set of context-free and context-sensitive rules is
applied to a word to either remove its suffix or transform it into another form

1In English, a prefix has a special meaning. For example, “in” in “indefinite” and “pre” in
“predefine” are considered prefixes, whereas “inde” and “pred” are not. However, for string
processing, a prefix does not have to have a special meaning in the language. A prefix is just
a string that appears as the head of a string. In this chapter, we use the term linguistic prefix

to denote the meaningful prefixes in a language and the term prefix to denote meaningless
prefixes in strings.

4 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

Rule Type Rules Remarks
Context-free sses −→ ss

ies −→ i

s −→ NULL

Context-
sensitive

(∗v∗) :ed −→ NULL,

ing −→ NULL

(∗v∗) requires the prefix before
“ed” to contain at least one vowel

Examples:
plastered −→ plaster

tied −→ ti

bled −→ bled Prefix “bl” does not have a vowel
bed −→ bed

motoring −→ motor

sing −→ sing Prefix “s” does not have a vowel

Figure 2: Examples of context-free and context-sensitive rules in Porter’s algo-
rithm.

for processing in the next step. Examples of context-free and context-sensitive
rules are shown in Figure 2. It is interesting to note that a simple rule (∗v∗) : ed,
where (∗v∗) is a context specifying that the prefix before “ed” must contain at
least one vowel can avoid many wrong stemming should the rule ed −→ NULL

be applied without the context requirement. As an exercise, try to remove
“able” from the ”table” or “s” from “gas”.

Context-free rules are convenient because they can apply to a large number
of words, but they don’t always produce the right stems. Thus, a combination
of context-free and context-sensitive rules must be used. For example,

Context-free: ies −→ i

Context-sensitive: ∗v∗ki −→ ky

Examples: skies −→ ski “ski” is not turned into “sky”
Context-free ful −→ NULL

Context-sensitive ∗v∗ti −→ ty

Examples: beautiful −→ beauti

−→ beauty

Matching multiple rules

When a word matches more than one rule, the longest matching rule will be
applied. For example, give two rules, ability −→ NULL and ty −→ ti, both
of which can be applied to computability, the longer rule should apply, i.e.,
computability −→ computa.

Rules can be applied iteratively, e.g., in the following transformation:

willingness −→ willing −→ will

By specifying the right context, we could prevent the rule ing −→ NULL be
repeatedly applied to produce an incorrect stem:

5 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

singing −→ sing −→ s

1.2.2 Statistical Methods

The creation of linguistic rules require a lot of linguistic knowledge about the
language. It is not only time consuming to create but even more so to maintain.
Change of one rule may have unpredictable rippling effects on other rules. This
partly explains the fact that there were very few extensions made to Porter’s
algorithm ever since it was published in 1980.

Linguistic methods can be considered as reduction methods, since they try to
identify suffixes and reduce them. This is why linguistic knowledge is required.
For example, how do you know that “tion” is a reducible suffix but not “on”?

Statistical methods aim at deriving the stem of a word by studying analyz-
ing a large corpus. Statistical methods are based on the understanding of a
language’s generative mechanism, that is, how people create spelling variants
from a stem.

Take English as an example, spelling variants are created by either append- Statistical
stemming is
based on the
generative
principle of a
language.

ing different suffixes directly to a stem or after changing the last one or two
characters of the stem. Consider the stem “compute”, which should have ex-
isted in the English vocabulary for a long time. As the language develops, we
need to create a word for devices that can computer. Thus, we create the word
“computer” by adding an “r” to “computer”. Then, as the field of computer
science advances, the need for “computability” and “computable” arise. We
created them again based on the word “compute” but this time we drop the
last letter “e” before the suffixes are appended to it. Likewise, we can observe
that spelling variants like “computed” and “computes” simply add one more
character to the end of “compute”, whereas spelling variants like “computing”
and “computation” are formed by removing the last “e” from “compute”.

If the generative mechanism is like what we describe above, then a heuristic
to find a stem would be to identify a stable prefix that has a lot of different
suffixes. This leads to the successor variety method.

1.2.3 Successor variety method

The Successor Variety method defines the successor variety (SV) of a prefix as
the number of different characters found at the character position following the
prefix. When the SV of a prefix is low, it means very few words are formed out
of the prefix and the prefix is not likely a stem. On the other hand, when the
SV is high, it means that many words are formed based on the prefix, and the
prefix is likely a stem.

Formally, given a corpus, the SV of a string is defined as the number of
different characters that are found to follow the string in the corpus. Figure 3
shows a set of words extracted from a corpus and the SVs of the prefixes of the
word “computer”.

To identify the stem of a word, we find the SVs of all of the prefixes of the
word and identify the prefix with the highest SV. There are several ways to find

6 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

Corpus

compareφ

computationφ

computationalφ

computeφ

computerφ

computingφ

Prefix SV Distinct Letters
c 1 o
co 1 m
com 1 p
comp 2 a,u
compu 1 t
comput 3 a,e,i
compute 2 r,φ
computer 1 φ

Hα

0
0
0
0.65
0
1.52
1
0

Figure 3: Computing the successor variety values of “computer”.

prefixes with high SVs. The obvious way to take the absolute SV values and
apply a threshold to it (hence the threshold method). When the threshold is set
to be SV ≥ 2, then “comp”, “comput” and “compute” are considered to have
high SVs and are candidates as the stem of the word.

It is clear that the threshold method is suitable since the SV values vary
widely for different words. A more robust rule is to identify the prefixes that
have higher SVs than their right and left neighbors. This is called the peak and

plateau method. In the example, the peak occurs at “comput”, whereas “comp”
can be considered as the second choice.

1.2.4 Entropy-based SV

We note that the absolute SV are not reliable because it counts the number of
different characters following a prefix but not how many times the characters
appear. This creates unfairness as shown in Figure 4.

Corpus

probabilityφ

probableφ

probablyφ

Prefix SV
probab 2
probabl 2
probable 1

Figure 4: Successor variety ignores fre-
quency information.

The two prefixes “probab” and
“probabl” both have SV equal 2 and
as such are tie. However, look-
ing closer, we find that “probab” is
followed by one “i” and two “l”s,
where as “probabl” is followed by
one “e” and one ”y”. Intuitively,
“probab” has less variation than
“probabl”, because the former oc-
curs three times but only has two different succeeding characters whereas the
latter occurs only twice with the same number of different succeeding charac-
ters. From an information theory point of view, the characters after “probab”
is more predictable, and as such less varied, than that of “probabl”.

To introduce frequency information into SV, we can compute the entropy

of a prefix α as follows. First, we compute the probability that character “j”

7 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

appears after α, denoted by Pαj .

Pαj =
|Dαj |
|Dα|

(1)

where |Dαj | is the number of strings in which “j” appears right after α and
|Dα| is the number of strings containing α as the prefix.

The entropy of α is the summation of the probabilities of all characters that
might appear right after α.

Hα =
∑

j∈‘a′...‘z′

−Pαj · log2 Pαj (2)

Applying the entropy formulation to the previous example, we obtain results
that confirm our intuition that “probabl” is a better stem.

Hα(α = “probab”) = −(0.33 ∗ log20.33 + 0.67 ∗ log20.67) = 0.91

Hα(α = “probabl”) = −(0.5 ∗ log20.5 + 0.5 ∗ log20.5) = 1

The entropy for the example in Fig. 3 is given in the Hα table. The following
shows the computation of Hα for the prefixes with non-zero Hα:

Hα(α = “comp”) = 1

6
log2

1

6
+ 5

6
log2

5

6
= 0.65

Hα(α = “comput”) = 2

5
log2

2

5
+ 2

5
log2

2

5
+ 1

5
log2

1

5
= 1.52

Hα(α = “compute”) = 1

2
log2

1

2
+ 1

2
log2

1

2
= 1

1.2.5 Picking the stem

Once the SVs of a word are computed, the remaining question is where to
segment the word because there may be more than one choice. For the example
shown if Fig 3, “comput” is the winner with “comp” a close second. When there
is a tie, we can resort to heuristics to break the tie. For example,

• Pick the longer prefix

• Pick the prefix that is a complete word by itself (assuming a dictionary is
available)

• Pick a prefix that appears as a word in the corpus (in the lack of a dictio-
nary).

8 c©Suntek Computer Systems

1.2 Stemming Methods1 SELECTING AND PROCESSING INDEX TERMS

1.2.6 Shared bigram method

The shared bigram method is based on the observation that the spelling vari-
ants of a stem are very similar in spelling. From the search point of view,
the function of stemming is to allow various spellings of the same stem to be
matchable. Thus, we can derive a method that allow words to match based on
how close their spellings are. The shared bigram method divides a word into
overlapping bigrams and matches a word against another by finding out how
many of their bigrams match (thus the name shared bigram. For example, the
words “statistics” and “statistical” can be represented by the following sets of
bigrams”

statistics =⇒ S1 = {st, ta, at, ti, is, st, ti, ic, cs}
statistical =⇒ S2 = {st, ta, at, ti, is, st, ti, ic, ca, al}

We can observe that a word is transformed into a set of bigrams. Two sets of
bigrams can be compared using any of the similarity measures that we learnt in
the vector space model. For example, using the Dice

Inner product: |S1 ∩ S2| = 8

Dice: 2×|S1∩S2|
|S1|+|S2|

= 2×6

7+8
= 0.8

Jaccard: |S1∩S2|
|S1∪S2|

= 6

11
= 0.55

Note that the bigrams must overlap so that much of the character sequence
information of the word is preserved in the bigram set. For example, “abcd”
matches “abed” better than “cdab”. Furthermore, trigrams (sequences of three
characters) can also be used. However, trigrams are more strict than bigrams
in matching. For example, the trigrams in “abcd” would not match any of the
trigrams of “abed”, thus producing a zero similarity score, whereas bigrams
would produce a non-zero similarity score.

9 c©Suntek Computer Systems

